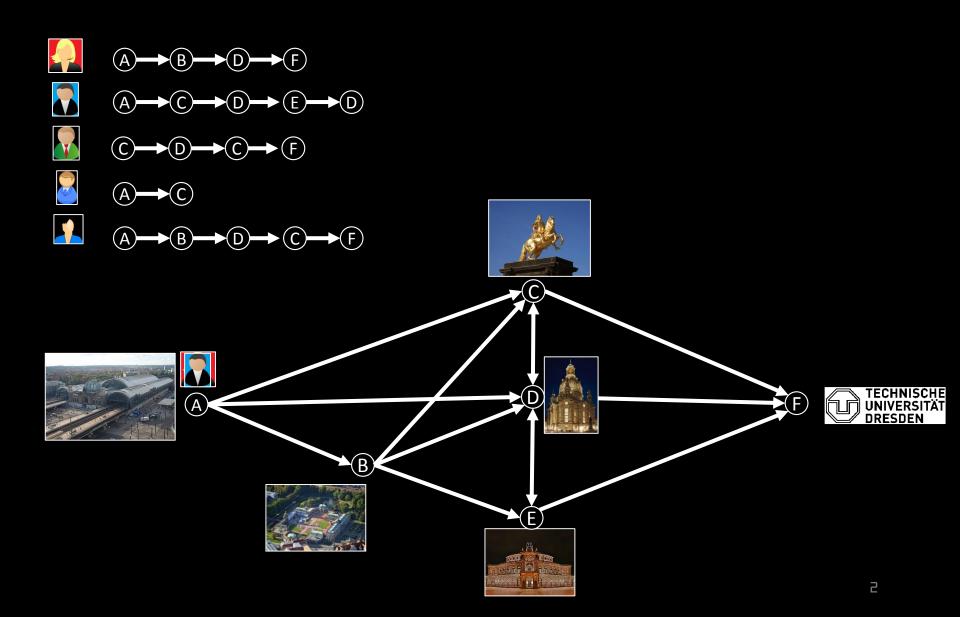


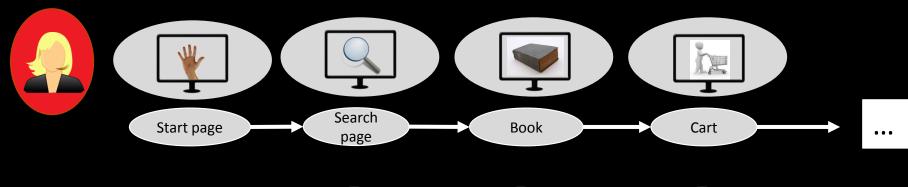
Bayesian hypothesis comparison in sequential data

Florian Lemmerich Dresden, 12.09.2017

Urban navigation



Example: website navigation (online shop)

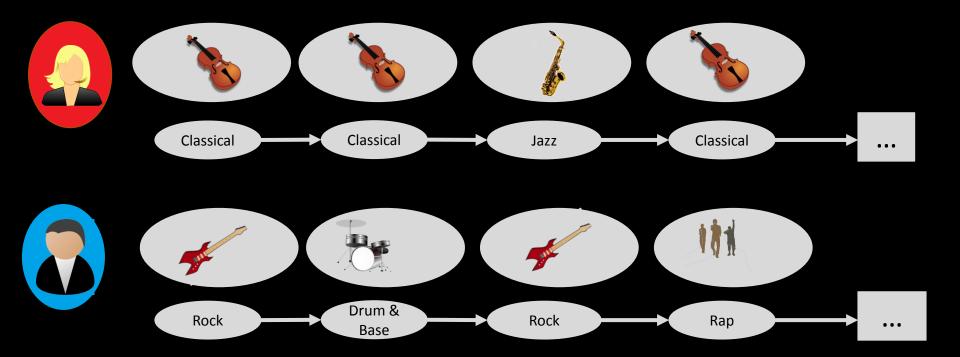




...

З

Example: listening history



What are the underlying mechanisms that generate this data?

Agenda

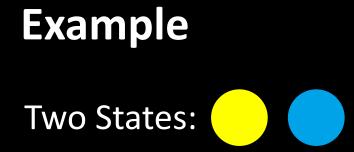
- Introduction
- Background: Markov Chain Models
- HypTrails: Comparing hypothesis about sequential data
 - Bayesian Hypothesis Testing
 - The Hyptrails approach
 - Applications
 - Extensions
- Conclusions

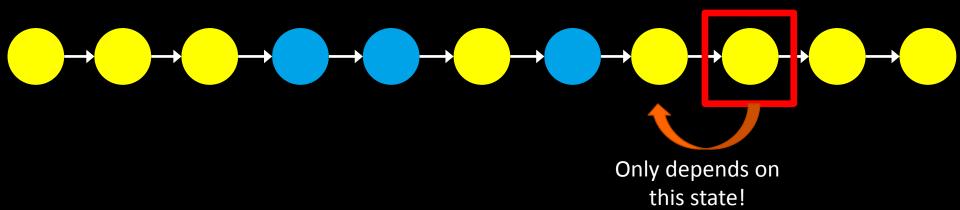
Background: Markov chain models

Markov chain model

- Stochastic model for transitions between states
- State space S = {s₁, s₂, ..., s_m}
- Amounts to sequence of random variables X₁, X₂, ... X_t
- Markovian property:
 - Next state in a sequence only depends on the current one
 - Process is stable (constant) over time

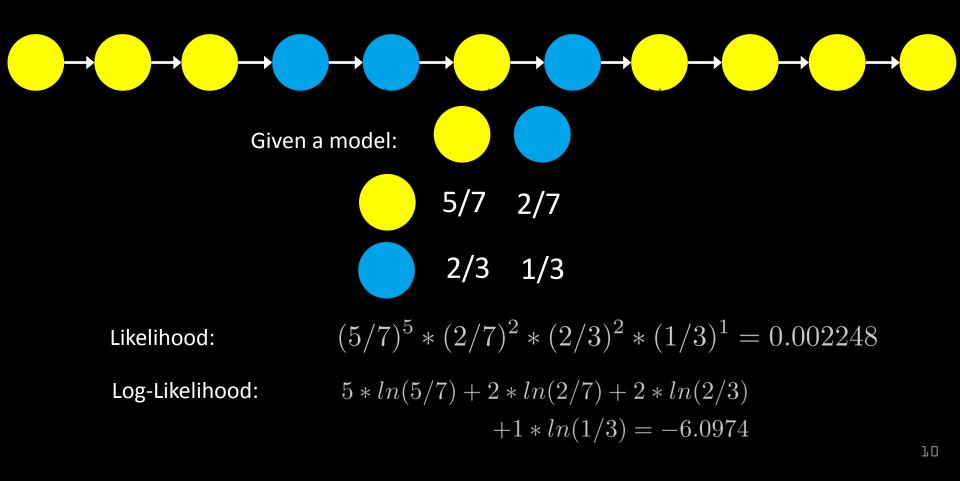
$$P(X_{t+1} = s_j | X_1 = s_{i_1}, \dots, X_{t-1} = s_{i_{t-1}}, X_t = s_{i_t}) = P(X_{t+1} = s_j | X_t = s_{i_t}) = p_{i,j}$$





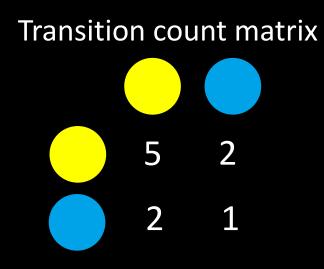
Computing the likelihood

How good is a given model for some data?

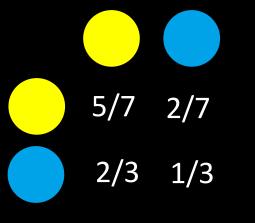


Fitting the model

How to determine model parameters?



Transition probability matrix



= Model parameters

Extensions

- Higher order Markov chains
 - State depends on the last *n* states
- Variable order Markov chains
 - Order dependent on the context
 - Reduces parameter space of higher order Markov chains
- Hidden Markov models
 - There is an unobserved Markov chain sequence of variables that generates the observed sequence
- Semi-Markov chains

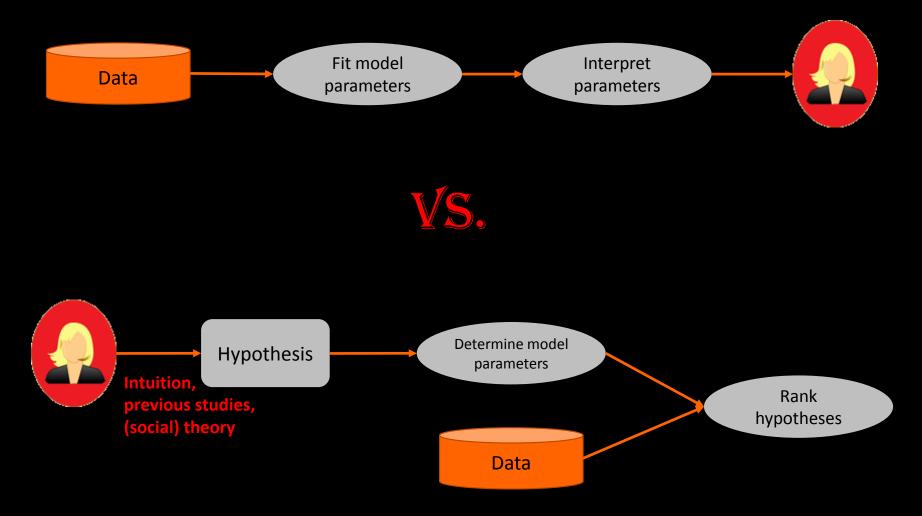
...

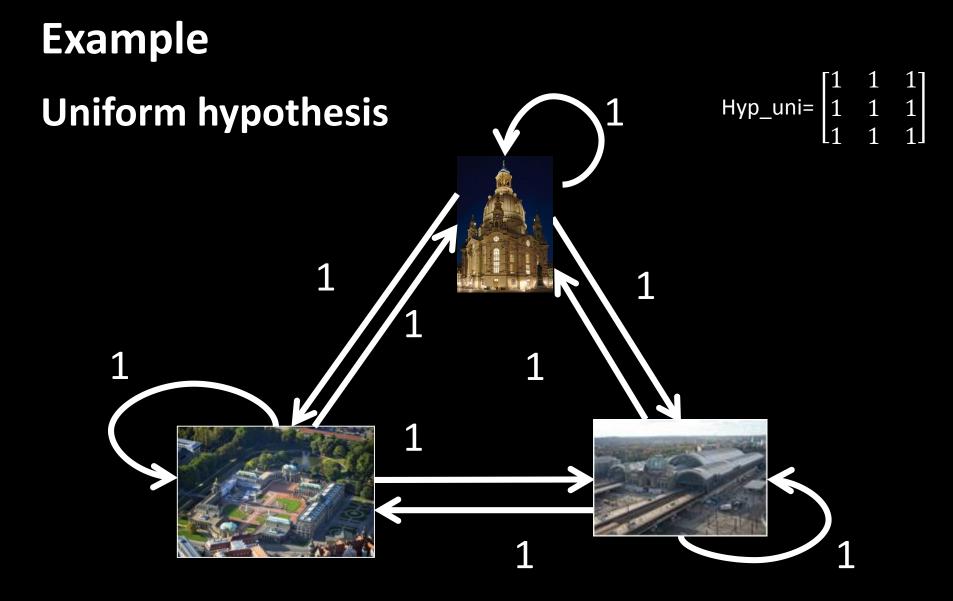
Mixtures of Markov chains

Applications

- Sequence of letters [Markov 1912, Hayes 2013]
- Web navigation, PageRank [Page et al. 1999]
- Speech recognition [Rabiner 1989]
- Weather data [Gabriel & Neumann 1962]
- Gene, DNA sequences [Salzberg et al. 1998]
- Computer performance evaluation [Scherr 1967]
- Markov Chain Monte Carlo (MCMC)

Parameter learning vs hypothesis testing

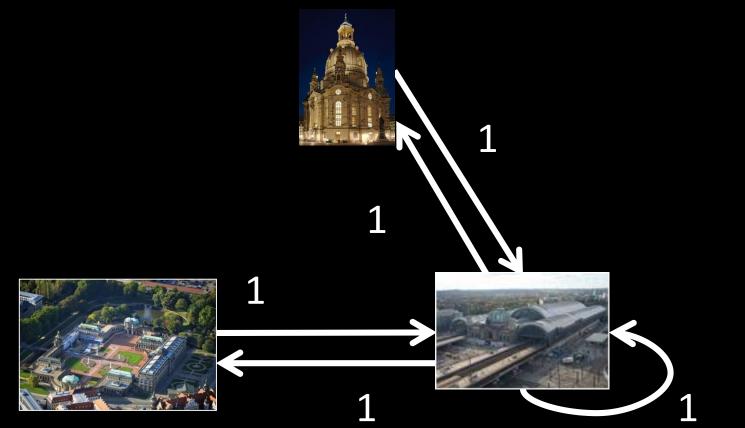


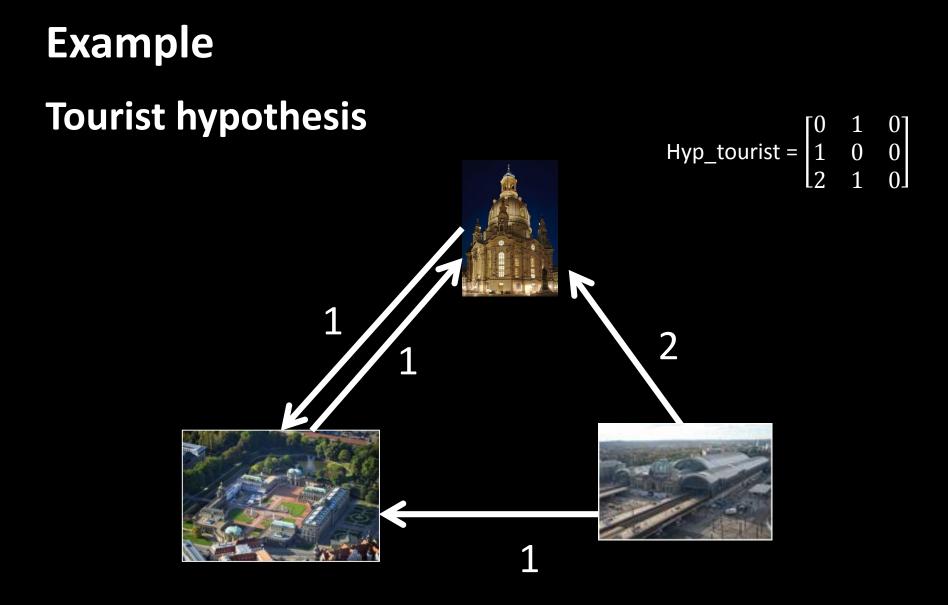


Example

Bus route hypothesis

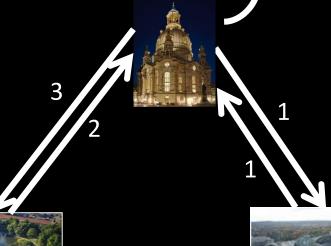
Hyp_bus = $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$





Example

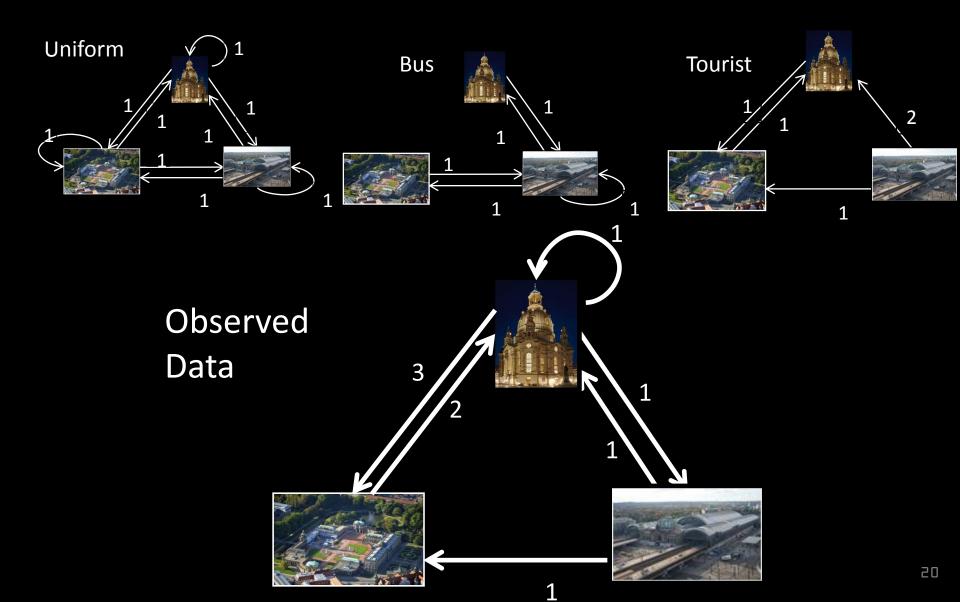
Observed data



Data = $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

1

Summary



Which hypothesis is most plausible given the observed data?

Goal

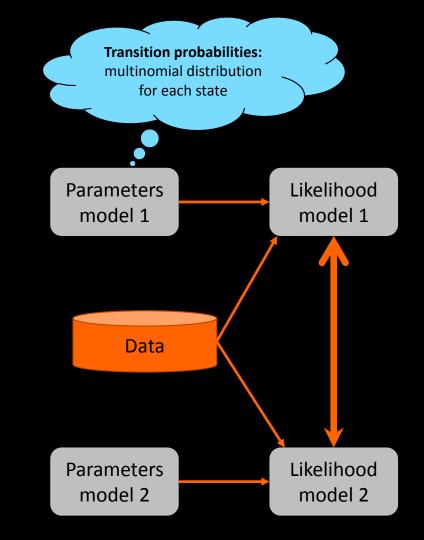
- Come up with an ordering of such hypotheses with respect to plausibility to observed data
- Consider that hypothesis specifications are not precise/uncertain
- Compare the "significance" of a difference in plausibility between two hypotheses
- **NOT a goal:** come up with a good (but not interpretable) model

Model comparison

- Given two (parameterized) models, which model is better?
- Simple methods: compare the likelihoods
- Alternatives (for different types of models):
 - Akaike Information Criterion (AIC),
 - Bayesian Information Criterion (BIC),
 - Likelihood ratio test

Bayes Factors

Frequentist model comparison



Bayesian Statistics

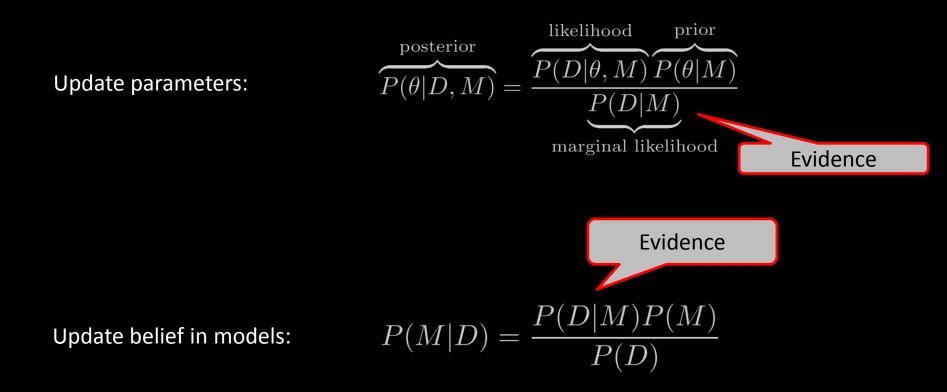
- Random variables model *uncertainty* in the data
- Probability distributions model beliefs
- Prior beliefs get updated to a posterior belief once new data becomes available (with Bayes Formula)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Often a problem: dependency on the prior

Bayesian model selection

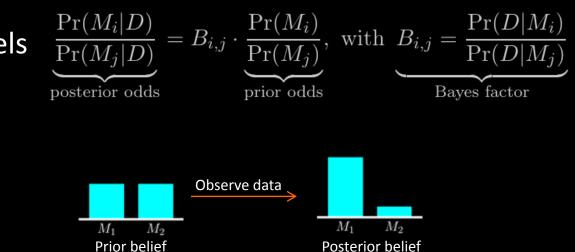
- Probability theory for choosing between models
- Posterior probability of model M given data D



Bayes Factor

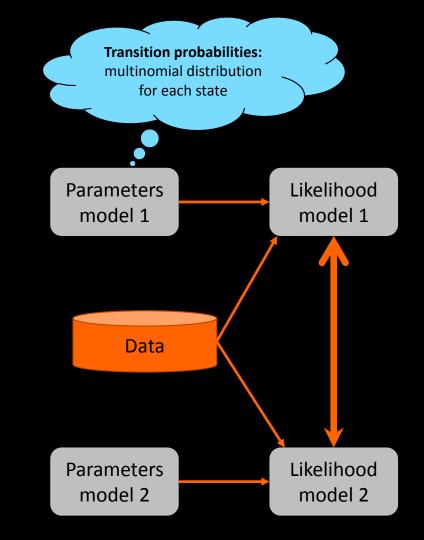
Bayes Factor

Comparing two models

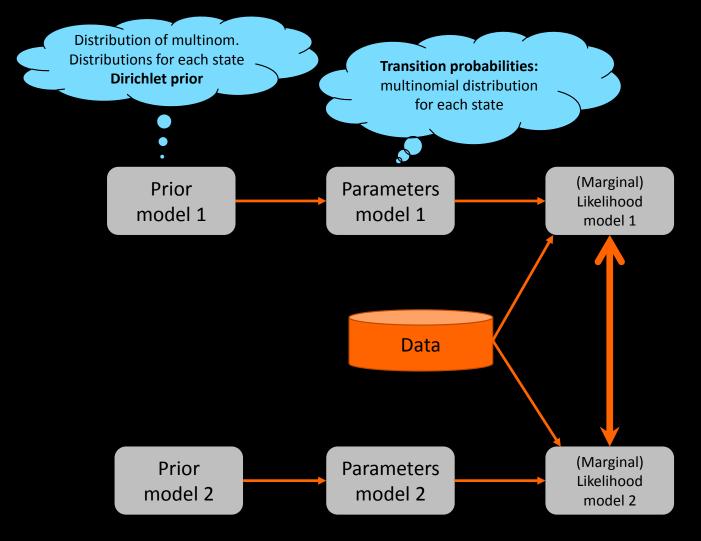


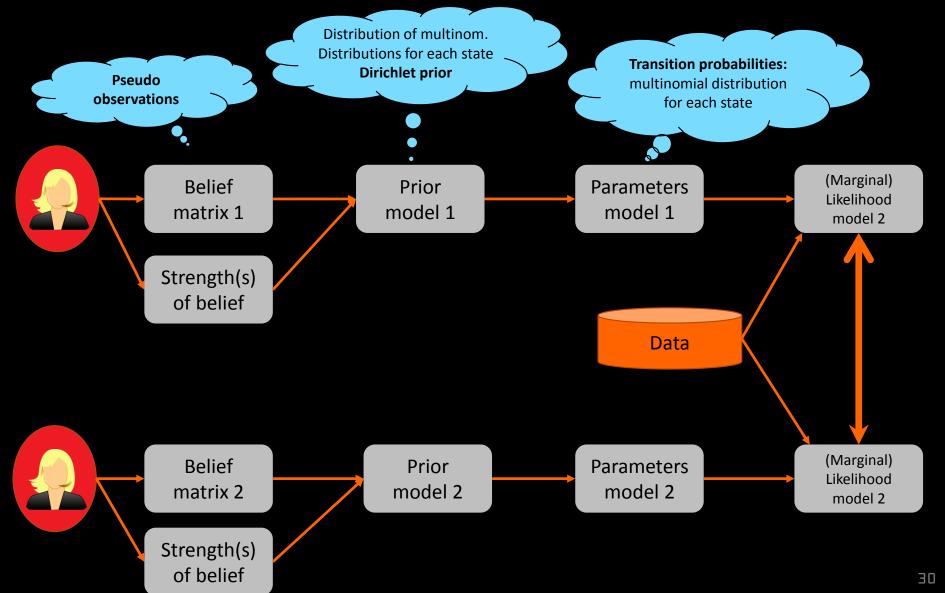
- Evidence: Parameters marginalized out
- Automatic penalty for model complexity (Occam's razor)
- Strength of Bayes factor: interpretation table
- It is a relative comparison!

Frequentist model comparison



Bayesian model comparison





Conjugate Prior: Dirichlet distribution (belief in parameters)

$$Dir(\boldsymbol{x}, \boldsymbol{\alpha}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{j} x_{j}^{\alpha_{j}-1} = \frac{\Gamma(\sum_{j} \alpha_{j})}{\prod_{j} \Gamma(\alpha_{j})} \prod_{j} x_{j}^{\alpha_{j}-1}$$

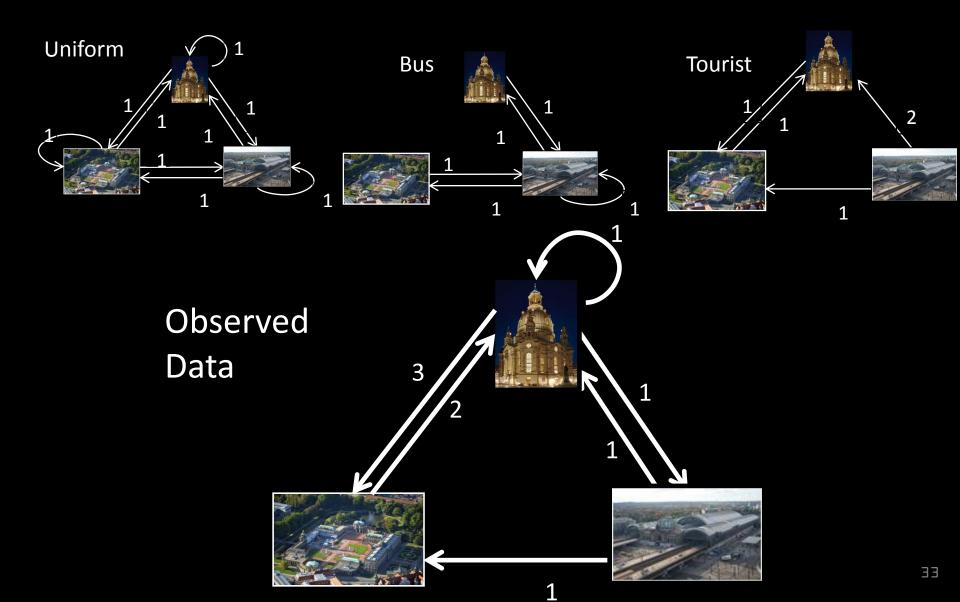
Marginal Likelihood (Evidence)

$$P(D|M) = \prod_{i} \frac{\Gamma(\sum_{j} \alpha_{i,j})}{\prod_{j} \Gamma(\alpha_{i,j})} \frac{\prod_{j} \Gamma(n_{i,j} + \alpha_{i,j})}{\Gamma(\sum_{j} (n_{i,j} + \alpha_{i,j}))}$$

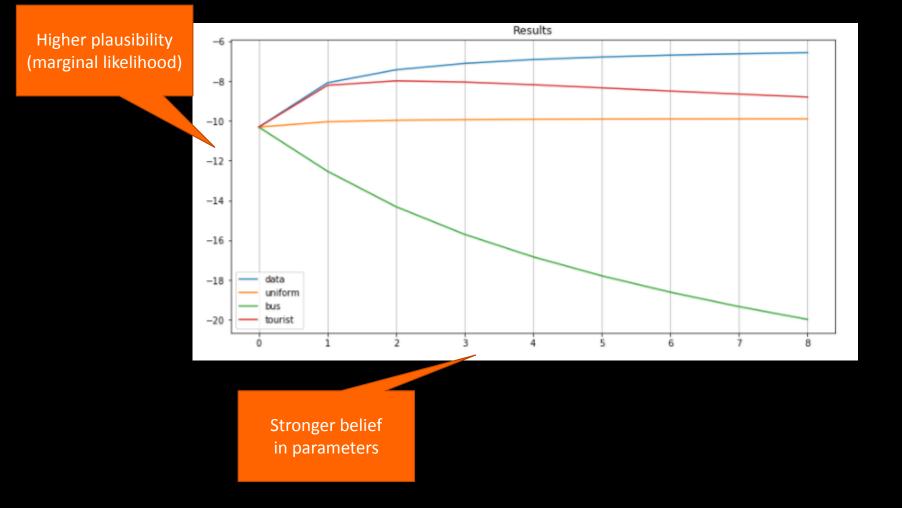
Usually we compute (and plot) log (marginal likelihoods)!

- Input:
 - A set of belief matrices
 - A set of parameters k for the strength of belief
 - Observed data
- Output:
 - A marginal likelihood for each hypothesis and each k
 - Ordering of the hypotheses with respect to their plausibility for the data
 - → A Bayes Factor to compare two hypotheses (substitute for a p-value)

Summary

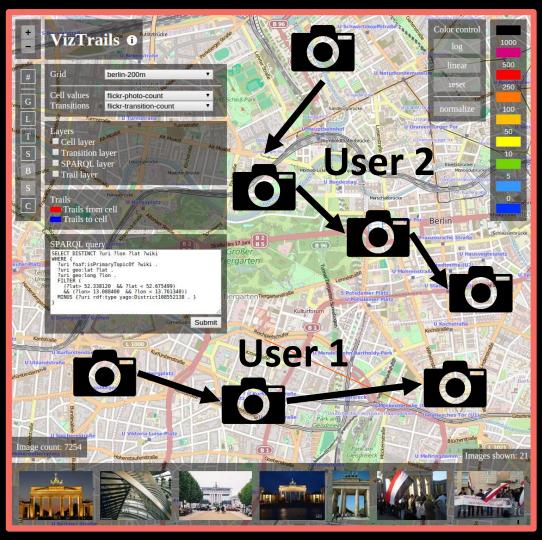


Example results



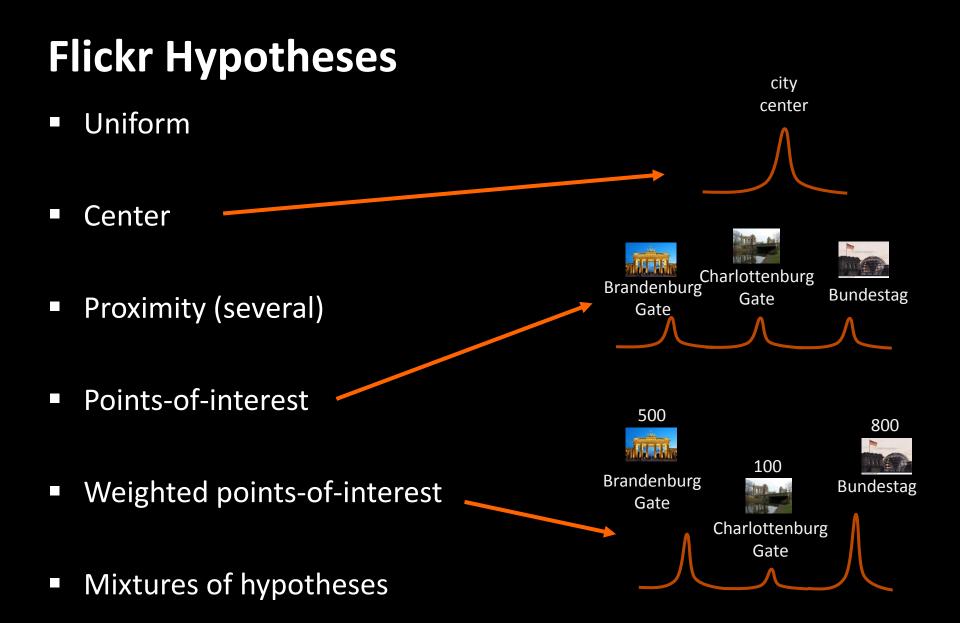
Applications

FlickrTrails

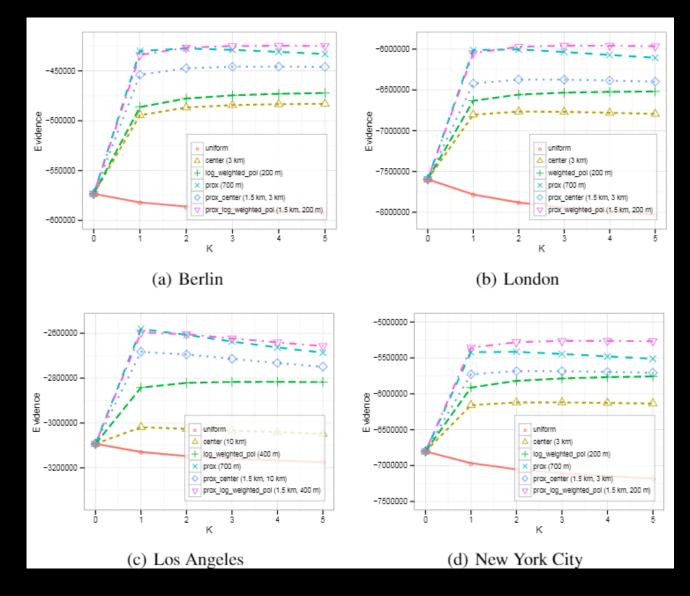


FlickrTrails

- Crawled all pictures with geo-tags in 4 major cities
- Generated user paths for each user within the city
- Used grid to obtain a discrete state space
- Where will a user take his next picture?
- Details:
 - Only photos with accuracy 16 (street level)
 - 200 x 200m grids
 - One trail per user
 - No self transitions
 - Minimum trail length 2



FlickrTrails: Results



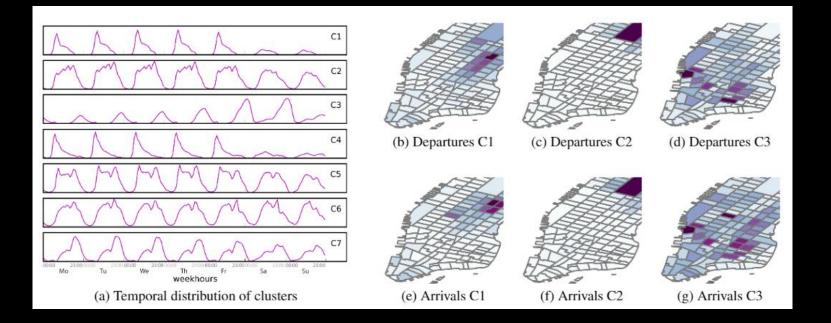
TaxiTrails

- Data on ~170 million taxi rides in New York City in 2013
- Mapped each start and stop location to its NYC tract
- Focused on rides within Manhattan
- Features to build hypotheses:
 - Distance-based: Geographical Center, Flatiron Building, Times Square
 - Census-data: Population size, percentage of white people, black people, People in labor force, people below poverty level, number of theaters, number of libraries, % occupied by parcs, ...
 - Foursquare-data: # venues/checkins overall, and filtered on types of venues (nightlife, sport, food, shops)...
- Overall 70 hypotheses

Clustering of taxi rides

Additional:

Spatio-temporal clustering of data (by tensor-factorization)



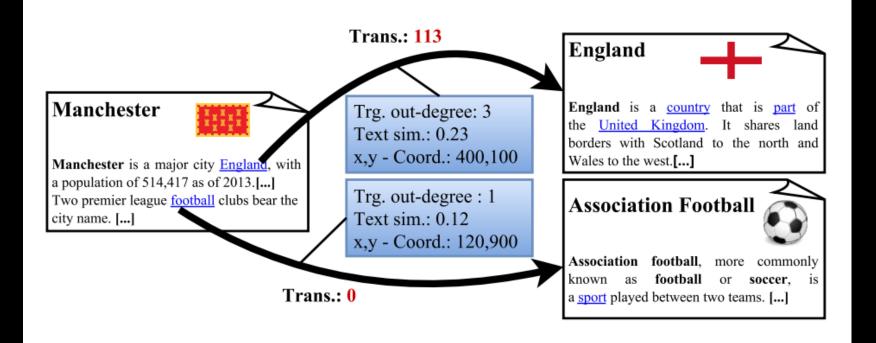
Taxi data results

Apply HypTrails separately on each cluster, rank hypotheses

Table 4: Ranking of Hypotheses. This table shows the ranking of 23 out of 70 hypotheses evaluated with HypTrails over 3 different groups. *Overall* represents all 143*M* taxi rides in Manhattan 2013, clusters C_i are clusters identified by NTF. Numeric cells represent the ranks of the hypotheses in respective clusters. For the distance-based hypotheses, we only show results for the best parameter of the standard deviation σ (parameter in parentheses). Green cells highlight all hypotheses that outperform the uniform hypothesis.

*	Overall	Ć1	C2	C3	C4	C5	C6	C7
HYPOTHESES	2013	Workdays	Workdays	Weekends	Workdays	Workdays	Mo-Sa 6pm	Workdays
	2015	9am	6pm	lam	7am	9am, 6pm	Sa-Su 2pm	6pm
Dasenne								
Uniform	42	56	56	56	56	55	62	59
Distance-based (σ)								
Proximity	14 (3.0)	7 (1.0)	2 (0.5)	14 (1.0)	10 (1.0)	19 (1.0)	10 (0.01)	13 (1.0)
Centroid (Geographical Center)	38 (5.0)	50 (5.0)	25 (1.0)	58 (5.0)	52 (5.0)	58 (5.0)	51 (3.0)	51 (5.0)
Centroid (Flatiron Building)	29 (5.0)	32 (2.0)	51 (5.0)	17 (1.0)	2 (0.01)	4 (0.5)	44 (3.0)	20 (0.5)
Centroid (Times Square)	22 (3.0)	1 (0.5)	43 (3.0)	46 (3.0)	1 (0.5)	43 (2.0)	2 (0.01)	1 (0.01)
			Foursqua	re				
Gravitational (All venues)	1	12	14	10	14	10	14	9
Gravitational (Check-ins)	9	3	30	2	11	5	4	3
Gravitational (Work)	2	5	12	24	8	6	13	
Gravitational (Food)	5	4	31		12	15	11	4
Gravitational (Party)	7	17	37	1	19	9	20	5
Gravitational (Recreation)	15	21	10		17	13	7	
Venue Similarity	39	53	53	53	53	52	58	53
			Census					
Gravitational (Population)	21	61	28	20	59	46	42	25
Gravitational (Tract Area)	23	34	8	26	24	20	24	38
Gravitational (%White people)	6	24	13	28	28	27	35	27
Gravitational (Residential zoning)	50	65	19	35	65	61	67	49
Gravitational (Commercial zoning)	13	8	32	22	9	24	19	15
Gravitational (Art Galleries)	46	23	1	38	5	2	52	54
Gravitational (Museums)	54	13	3	40	6	7	26	58
Gravitational (Parks)	63	62	4	44	63	59	6	64
Race Similarity	32	48	50	52	50	50	59	50
Poverty Similarity	37	55	52	54	55	53	61	56
Employment Similarity	40	57	54	55	58	54	60	58

What makes a link succesful in Wikipedia

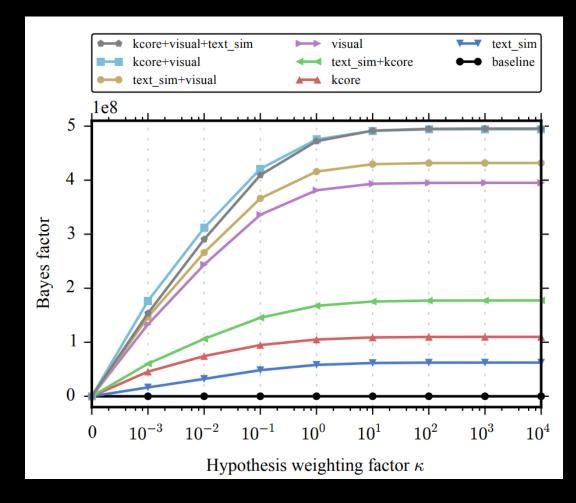


What makes a link succesful in Wikipedia

Data:

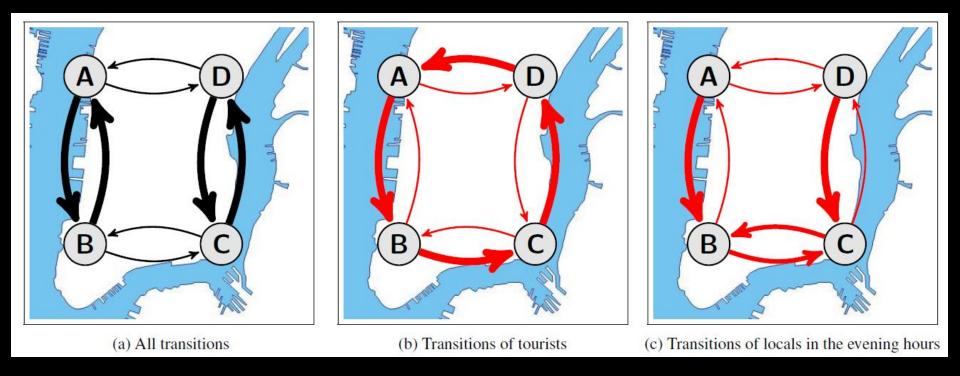
- Once month of viewer data
- Source page -> target page
- Features to form hypotheses:
 - Network-based: degree, centrality (k-core), page rank
 - Similarity-based features: text similarity, category similarity
 - Link-position features: head, body, info-box, nav-bar, ...

What makes a link succesful in Wikipedia

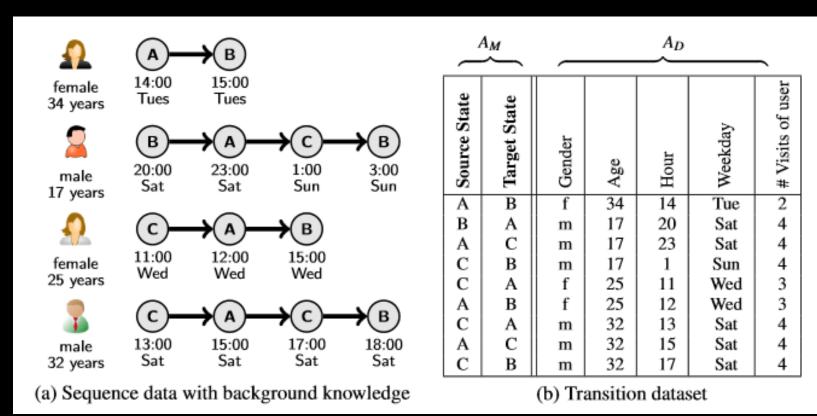


Extensions

Subgroup Behavior



Data Preparation



SubTrails

- Based on Subgroup Discovery / Exceptional Model Mining
- Find interpretable descriptions of subsets in the data that
 - ...have significantly different transition behavior than the entire dataset
 - ... specifically match a hypothesis or
 - ... specifically contradict a hypothesis

Results: Subtrails (Flickr)

(a) Comparison to the overall dataset						
Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}		
# Photos > 714	76,859	103.83 ± 2.41	42,277	106.68		
# Photos ≤ 25	78,254	88.83 ± 2.07	37,555	141.78		
Tourist = True	76,667	75.42 ± 1.79	33,418	148.64		
Tourist = False	310,314	75.00 ± 1.60	33,418	16.92		
Country = US	163,406	64.47 ± 1.39	44,822	70.97		
# Photos = 228-715	77,448	46.10 ± 1.02	33,214	115.65		
Country = Mexico	2,667	33.22 ± 0.82	3,575	122.83		
# PhotoViews > 164	79,218	31.58 ± 0.74	31,461	107.84		
# PhotoViews < 12	76,573	30.54 ± 0.71	30,881	110.83		

(a) Comparison to the overall detest

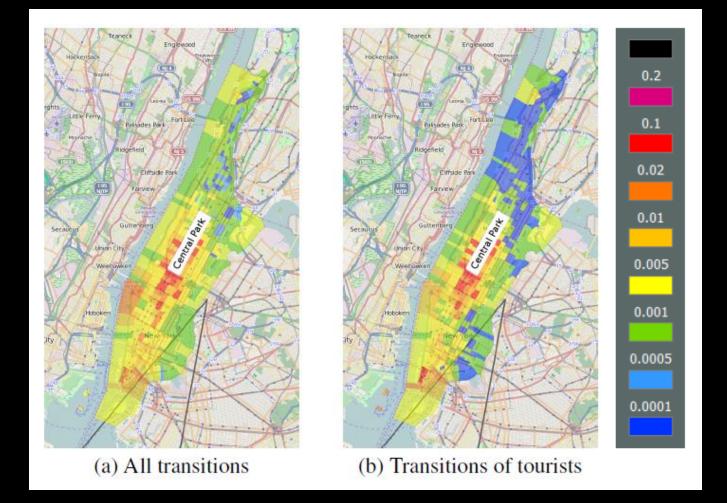
(b) Comparison to the Proximate-PoI hypothesis, contradicting

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
# Photos ≤ 25	78,254	64.85 ± 1.37	110,124	221.07
# Photos = 26-81	77,003	23.41 ± 0.53	99,646	207.21
Hour = $22h-23h$	14,944	18.26 ± 0.43	20,526	215.69
Hour = $23h-0h$	11,726	17.42 ± 0.37	16,404	208.91
Hour = $21h-22h$	17,806	16.52 ± 0.33	23,951	211.34
Tourist = False	310,314	16.09 ± 0.35	379,676	185.13
Hour = 0h-1h	9,693	15.12 ± 0.33	13,590	215.42

(c) Comparison to the Proximate-PoI hypothesis, matching

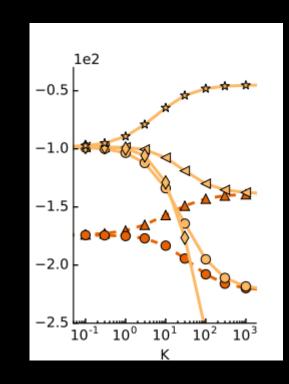
Description	# Inst.	$-q_{tv}$ (score)	ω_{tv}	Δ_{tv}
# Photos > 714	76,859	58.59 ± 1.30	80,690	164.16
# PhotoViews < 12	76,573	21.56 ± 0.50	88,948	185.78
Hour = $12h-13h$	25,022	14.04 ± 0.32	29,590	187.84
# Photos = 228–714	77,448	10.63 ± 0.23	91,877	193.57
Tourist = True	76,667	10.60 ± 0.24	91,214	197.79
Hour = $14h-15h$	27,420	10.51 ± 0.25	33,028	194.40
Hour = 11h-12h	20,323	9.18 ± 0.21	24,613	196.99

Results: Subtrails (Flickr)



Mixed Trails

- Allow to specify different hypothesis for different parts of the data
- E.g., tourist go to Pol, non-tourists stay in their neighborhood
- Probabilistic assignment to groups



Summary & Outlook

Summary

- HypTrails:
 - A novel combination of methods
 - Try to explain underlying mechanisms that generate data
 - Bayesian hypothesis testing and ranking on sequential data
 - Easy and efficient to apply
- Example applications:
 - Flickr: explain sequences of locations a user took pictures
 - Taxi: explain destinations of taxi rides
 - Wikipedia: explain the popularity of links on a page

Image sources

- https://upload.wikimedia.org/wikipedia/commons/0/02/Dresden-Frauenkirche-night.jpg
- https://tu-dresden.de/++theme++tud.theme.webcms2/img/tud-logo.svg
- https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Dresden-Germany-Main_station.jpg/290px-Dresden-Germany-Main_station.jpg
- https://upload.wikimedia.org/wikipedia/commons/a/a8/Aerial_view_of_the_Zwinger%2C_Dresden.jpg
- https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Semperoper_at_night.jpg/220px-Semperoper_at_night.jpg
- Icons from pixabay