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Example: website navigation (online shop)
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Example: listening history
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What are the underlying 
mechanisms that generate this data?
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Background: Markov chain models



Markov chain model

 Stochastic model for transitions between states

 State space S = {s1, s2, …, sm}

 Amounts to sequence of random variables X1, X2, … Xt

 Markovian property:
 Next state in a sequence only depends on the current one

 Process is stable (constant) over time
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Example
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Two States:

Only depends on
this state!



Computing the likelihood

 How good is a given model for some data?
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Likelihood:

Log-Likelihood:
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Fitting the model

 How to determine model parameters?
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Extensions

 Higher order Markov chains
 State depends on the last n states

 Variable order Markov chains
 Order dependent on the context

 Reduces parameter space of higher order Markov chains

 Hidden Markov models
 There is an unobserved Markov chain sequence of variables that

generates the observed sequence

 Semi-Markov chains

 Mixtures of Markov chains

 …
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Applications

 Sequence of letters [Markov 1912, Hayes 2013] 

 Web navigation, PageRank [Page et al. 1999]

 Speech recognition [Rabiner 1989]

 Weather data [Gabriel & Neumann 1962]

 Gene, DNA sequences [Salzberg et al. 1998]

 Computer performance evaluation [Scherr 1967]

 Markov Chain Monte Carlo (MCMC)
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HypTrails



Parameter learning vs hypothesis testing
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Example

Uniform hypothesis

16

1

1

1

1

1

1
1

1

1 Hyp_uni= 
1 1 1
1 1 1
1 1 1



Example

Bus route hypothesis
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Example

Tourist hypothesis
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Example

Observed data
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Data = 
1 3 1
2 0 0
1 0 0
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Which hypothesis is most plausible 
given the observed data?
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Goal

 Come up with an ordering of such hypotheses with respect to 
plausibility to observed data

 Consider that hypothesis specifications are not precise/uncertain

 Compare the “significance” of a difference in plausibility 
between two hypotheses

 NOT a goal: come up with a good (but not interpretable) model
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Model comparison

 Given two (parameterized) models, which model is better?

 Simple methods: compare the likelihoods

 Alternatives (for different types of models):
 Akaike Information Criterion (AIC), 

 Bayesian Information Criterion (BIC), 

 Likelihood ratio test

 Bayes Factors
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Frequentist model comparison
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Data

Parameters
model 1

Likelihood
model 1

Parameters
model 2

Likelihood
model 2

Transition probabilities:
multinomial distribution

for each state



Bayesian Statistics

 Random variables model uncertainty in the data

 Probability distributions model beliefs

 Prior beliefs get updated to a posterior belief once new data
becomes available (with Bayes Formula)

 Often a problem: dependency on the prior

𝑃(𝐴|𝐵) =
𝑃 𝐵 𝐴) 𝑃(𝐴)

𝑃(𝐵)

25



Bayesian model selection

 Probability theory for choosing between models

 Posterior probability of model M given data D

Evidence

Evidence

Update parameters:

Update belief in models:
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Bayes Factor

 Comparing two models

 Bayes Factor

 Evidence: Parameters marginalized out

 Automatic penalty for model complexity (Occam's razor)

 Strength of Bayes factor: interpretation table

 It is a relative comparison!
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Observe data

Prior belief Posterior belief



Frequentist model comparison
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Bayesian model comparison
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HypTrails
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HypTrails

 Conjugate Prior: Dirichlet distribution (belief in parameters)

 Marginal Likelihood (Evidence)

 Usually we compute (and plot) log (marginal likelihoods)!
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HypTrails

 Input:
 A set of belief matrices

 A set of parameters k for the strength of belief

 Observed data

 Output:
 A marginal likelihood for each hypothesis and each k

Ordering of the hypotheses with respect to their plausibility for the data

A Bayes Factor to compare two hypotheses (substitute for a p-value)
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Example results
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Higher plausibility
(marginal likelihood)

Stronger belief 
in parameters



Applications



FlickrTrails

User 1

User 2

http://dmir.org/viztrails
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FlickrTrails

 Crawled all pictures with geo-tags in 4 major cities

 Generated user paths for each user within the city

 Used grid to obtain a discrete state space

 Where will a user take his next picture?

 Details:
 Only photos with accuracy 16 (street level)

 200 x 200m grids

 One trail per user

 No self transitions

 Minimum trail length 2
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Flickr Hypotheses

 Uniform

 Center

 Proximity (several)

 Points-of-interest

 Weighted points-of-interest

 Mixtures of hypotheses
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FlickrTrails: Results
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TaxiTrails

 Data on ~170 million taxi rides in New York City in 2013

 Mapped each start and stop location to its NYC tract

 Focused on rides within Manhattan

 Features to build hypotheses:
 Distance-based: Geographical Center, Flatiron Building, Times Square

 Census-data: Population size, percentage of white people, black people, 
People in labor force, people below poverty level, number of theaters, 
number of libraries, % occupied by parcs, …

 Foursquare-data: # venues/checkins overall, and filtered on types of 
venues (nightlife, sport, food, shops)…

 Overall 70 hypotheses
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Clustering of taxi rides

 Additional: 
Spatio-temporal clustering of data (by tensor-factorization)
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Taxi data results

 Apply HypTrails separately on each cluster, rank hypotheses
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What makes a link succesful in Wikipedia
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What makes a link succesful in Wikipedia

 Data:
 Once month of viewer data

 Source page -> target page

 Features to form hypotheses:
 Network-based: degree, centrality (k-core), page rank

 Similarity-based features: text similarity, category similarity

 Link-position features: head, body, info-box, nav-bar, … 
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What makes a link succesful in Wikipedia
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Extensions



Subgroup Behavior
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Data Preparation
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SubTrails

 Based on Subgroup Discovery / Exceptional Model Mining

 Find interpretable descriptions of subsets in the data that
 …have significantly different transition behavior than the entire dataset

 … specifically match a hypothesis or

 … specifically contradict a hypothesis
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Results: Subtrails (Flickr)

50



Results: Subtrails (Flickr)
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Mixed Trails

 Allow to specify different hypothesis for different parts of the
data

 E.g., tourist go to PoI, non-tourists stay in their neighborhood

 Probabilistic assignment to groups
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Summary & Outlook



Summary

 HypTrails:
 A novel combination of methods

 Try to explain underlying mechanisms that generate data

 Bayesian hypothesis testing and ranking on sequential data

 Easy and efficient to apply

 Example applications:
 Flickr: explain sequences of locations a user took pictures

 Taxi: explain destinations of taxi rides

 Wikipedia: explain the popularity of links on a page
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